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ABSTRACT

The Concealed Weapons Detection (CWD) problem involves the automatic detection and
recognition of weapons hidden underneath a person’s clothing. One type of sensor by itself may not
be able to detect a concealed weapon in different situations. Therefore, use of different imaging
sensors for this task may provide more information than using a single imaging sensor. CWD
includes several signal processing steps beginning with the initial step of image acquisition and
concluding with the decision of whether or not a weapon is present. In this report, we discuss image
registration, filtering for noise removal, image fusion, and shape recognition. The image registration
method presented here uses attributes of the individual source images to find corresponding areas in
the images. The image fusion technique described here is based on the wavelet transform where the
most salient features from the source images are placed in the fused image. For law enforcement
applications that may require transmission of images from remote locations, image fusion is utilized

for wireless image transmission.

Keywords: Concealed weapons detection, image registration, morphological filtering, image fusion,

shape recognition




TABLE OF CONTENTS

1. INTRODUCTION 1
2. IMAGE REGISTRATION 5
2.1 CHARACTERISTICS OF IR AND MMW IMAGES ...c.ccvviiitininiiiniieiinteesetsietesesseees e sesess s eaesen e eeesesenen e 6
2.2 IMAGE REGISTRATION REVIEW .......coiuiiiiiitiiniiniiiectsiieseseeete s tens sttt seeeeneee e s eseeseesesseesteeseseeeseenessesens 9
2.2.1 Area-based regiStration MEHNOMS ............coovvioeecueeeeeeeieeecieteeeeeeeeeeseeev et eeses et s st e s s e 10
2.2.2 Feature-based regiStration MEIROMAS ............cc.ocoovveeiiveeeeeeececreeisee e eeeeeer e et es e eeeesen e s 12

2.3. THE REGISTRATION ALGORITHM. .......coeiiiitiritiiinieieeetisetes s st eeeees e see e s s eseessesaseeseseesesssesssseesseesosesesesesss 14
2.3.1 Idea behind our @IGOFIthI................ccocovvueiovrioiicieieeeeeeeeeeeeeee et eee et 15
2.3.2 Body extraction algOrithim fOr IR ilHAGES...............cc.ceeueueeeeeceeeereisieeeeereeeseeeeeeeeves s s eeee s eeesessssse s 17
2.3.3 Body extraction algorithin for MMW GAEES ..........c.c.ccuoeveverieiieieeeeeeeeeeeeseeeesseseseeresseesessses e 19
2.3.4 Binary correlation Qlgorithi................cuceeeueueirieioieieeeeeeees et ee e ee e 21

2.4, EXPERIMENTAL RESULTS ....cuttiiietitie ettt sttt ettt ee e enseateseses e s et e e seseneeseeeee s e 25

3. MORPHOLOGICAL FILTERING 32
3.1 BINARY MORPHOLOGY ....coovuiiiiitiiiicacietieiueneneeeiseseessss s sssseess st sstesesesanessesessssass st sesseessosenaessssseeseseessanas 32
3.2 GRAY-SCALE MORPHOLOGY ....ocvuvriireininiatnieriniststaesesessssesasssassssesssssesasssessmsssesessessesesssssnesessstssesssasseessanns 36
3.3 MATHEMATICAL MORPHOLOGY FOR CWD ...ttt ees sttt e e e et neesseeeseens 40

4. IMAGE FUSION 42
4.1 WAVELET DECOMPOSITION AND RECONSTRUCTION .....ccttiriniateerentnsensesesesesssseissiesesseessesesessasasseesseeseasses 43
4.2 IMAGE FUSION ALGORITHM .....vcumiuiuiiretrinineireereninseissiesasese sttt enssssassessesssssessssssnsssonenenssnsesssssensosasesseeens 47
4.3 IMAGE FUSION EXAMPLES.........coiuiiiuiiiicitntier sttt ies st s e sttt tee s e s sa s eees e esereeen e eneaee 49

5. SHAPE RECOGNITION 55
5.1 RECOGNITION ALGORITHMS.........coveuteteiireneieueeettiestesseseseeeessesesseesseesssssessesssssesessessessssesseseressssossssssssssessoon 55
SeLid MOMEALS ...ttt ettt ettt s eae et n et e e et et et et t et e s 55

5. 1.2 FOUTIEr DeSCTIPIOTS: ........cveueueuieeieirenirenieiessesetete e siess e te st s s ete s e bt e eeeo et en et et eeeesese st eeanesesen e tsrnans 57
5.1.3 COMPACIRESS: ottt ettt e ettt ettt ettt ee st ee et sees st s e s s seeeeteraraen 59

S 2 TESTPROCEDURE .......ccutirietirintiiteteteteetst et teseet ettt st et esese e vt eremeeseseeseesentesessensesesesseseseessesesesssesesesseseseas 59

6. CWD EXAMPLE 63
7. IMAGE FUSION FOR WIRELESS IMAGE TRANSMISSION 66
7.1. CHANNEL MODEL......vtiimtiritisiiec sttt es s eesse sttt s st e s ettt ass s s esasessses ot esesssssesensesenteensseeenene 68
7.2. DIVERSITY COMBINING METHOD FOR UNCOMPRESSED IMAGES .......eeviueeriteeeeeeeeeeeseeseesereesesesesssesseseneas 70
7.3 DIVERSITY COMBINING METHOD FOR COMPRESSED IMAGES...........ooioitiioreeirerenieeeitees e sones e eeeeenens 79

8. CONCLUSIONS 87
REFERENCES 88

ii



Figure 1: Processing steps for CWD.........ouuiiiiiiiiiiiiiiie e 2

Figure 2.1: Two typical outdoor IR and MMW image pairs............ccoviiviiniiiiiin, 4
Figure 2.2. Three IR and MMW image pairs that demonstrate the features of IR and MMW sensors.. . 6
Figure 2.3: Smoothness of background in MMW images...........c.oooeviiiiiiiiin, 9
Figure 2.4 Registration of Extracted Image Boundaries.............cc.o.cooiiiiin 16
Figure.2.6. Block diagram for the registration algorithm.................ooii 17
Figure 2.7. Body extraction algorithm for IR images.............ccooeeiiiiiii 18
Figure 2.8: An example illustrating body extraction from IR image...................oiins 19
Figure 2.9: Body extraction steps for MMW images..........ccooooriiiiiiiii e 20
Fig.2.10 An example illustrating body extraction from MMW images...............oooeeiiiiinis 21
Figure 2.11: 2D correlation function before and after applying the mask................... 22
Figure 2.12: Block diagram for mask construction algorithm.................coooi 23
Fig.2.13 An example showing mask cOnstrucCtion StePS..........oevrimeiiiiiiiii 24
Figure 2.14. Complete registration algorithm................o 25
Figure 2.15. Image pairs used in our experiments. d is the distance between object and imager.......... 27
Figure 2.16; Registration results for the g35 pair...........cooooi 28
Figure 2.17: Registration results of the g39 pair..........c..cooveii 29
Figure 2.19: Registration results of the g59 pair..............coooii 30
Figure 2.20: Registration results of the g62 pair.............ccooiriiniiii 31
Figure 3.1: The basic morphological operations: (a) original image and structuring element, (b) the dilated
image and () the eroded IMAE. ... ....uvirimtiiii i 34

Figure 3.2: The (a) binary opening - erosion followed by dilation and (b) binary closing - dilation followed
L= £ 1o T P PERPPRTeS 35

Figure 3.3: Basic gray-scale operations: (a) the original signal, (b) the dilated signal and (c ) the eroded

£t ) A P P PP PR 38
Figure 3.4: Relationships between (a) gray-scale opening and the original signal and (b) gray-scale closing
and the original SigNal..........cooooiviiiiiii 39
Figure 3.5: The original IR and MMW images (manually registered).............cccooviiiiini 40
Figure 3.6: The morphologically filtered versions using (a) a 3 by 3 filter (b) a 5 by 5 filter and (c) a9 by 9
1L S POy 41
Figure 4.1: General image fusSion PrOCESS. . ...vuuuiiiiiieriiriiri e 43

Figure 4.2: One level wavelet decomposition from resolution 2{“ to 2/ for two-dimensional signal....45
Figure 4.3: One level wavelet reconstruction from resolution 2’ to resolution 2™ for two-dimensional

F T ) T LT O T L PPy ST P PP PRI 46
Figure 4.4: Synthetic image pairs: (a), (b) source images and (c) result..............c.ooiin 49
Figure 4.5: IR image pair: (a), (b) source images and (c) fused result................co.ooiiinnn, 51
Figure 4.6: Original (a) IR and (b) MMW images..........cooeoveniiiiiin 51
Figure 4.7: Fused images of the (a) original IR and MMW images and (b) filtered IR and MMW images
using a 3 by 3 filter, (c) a 5 by S filter and (d) a9 by 9 filter.............coooi 52
Figure 4.8: Thresholded results for original (a) IR and (b MMW images................coooeiininnn. 53

Figure 4.9: Fused results using the (a) original and (b) filtered images with a 3x3, (c) a 5x5 and (d) 9x9
1075 ST PP PP 54




Figure 5.1. Typical shapes in the weapon library (Libraryl)..........oooiiiiiiiiiiiii 60

Figure 6.1. Original IR and MMW QMages.........c.coiiiiiiiiiiiiiii e, 63
Figure 6.2. Registration, filtering and fusion of original image pair..................cocviiiiiiininien 64
Figure 6.3. Thresholding and shape recognition............cooeiiiiiiiie e, 65
Figure 7.1. Two-state Gilbert-Elliott channel..................ccoooiiiii e, 69
Figure 7.2. Diversity combining for uncompressed iMages. . .........ciiviniiiiiiniiiaiariiiareieas 71
Figure 7.3: Original test images for wireless image transmission: (a) Peppers and (b) Lenna............. 75
Figure 7.4. Results for Peppers image with BER = 0.0005 (a) BCH, (b) diversity combining; BER = 0.005
(c) BCH, (d) diversity combining; BER = 0.01 (e) BCH, (f) diversity combining........................... 77
Figure 7.5. Results for Lenna image with BER = 0.0005 (a) BCH, (b) diversity combining; BER = 0.005
(c) BCH, (d) diversity combining; BER = 0.01 (e) BCH, (f) diversity combining........................... 78
Figure 7.6. Diversity combining for compressed images............covoviiiiriiiiiiiiiiiee e 79
Figure 7.7. Interleaving and encoding scheme for a given data block................c.cocoiiiii 81
Figure 7.8: PSNR distribution for Lenna image source coded to 0.25 bpp..........oovviviviiniiiniinnnn, 84
Figure 7.9: PSNR distribution for Peppers image source coded t0 0.25 bpp.......coevvvviniiinaniiniinnns 85

iv



1. INTRODUCTION

The Concealed Weapons Detection (CWD) problem involves the automatic detection and
recognition of weapons hidden underneath a person’s clothing. One type of sensor by itself may not
be able to detect a concealed weapon in different situations. Use of different imaging sensors for this
task may provide more information than using a single imaging sensor. This is because dissimilar
sensors can provide different and possibly complementary information. One example of dissimilar
sensors is IR and MMW cameras. We have worked with images from both of these sensors where the
IR sensors tend to have better spatial resolution but do not penetrate clothing well and the MMW
sensors have poor spatial resolution but do a much better job at penetrating clothing. When the
individual image information is fused into a composite image, this image will contain more

information and increase the probability of recognition and correct interpretation.

CWD includes several signal processing steps beginning with the initial step of image
acquisition and concluding with the decision of whether or not a weapon is present. Figure 1 shows a
block diagram of the entire CWD process. The source images can be from multiple sensors of the
same type but placed at different viewing angles, or the source images may be from different sensor
types that provide complementary scene information. The first step after the acquisition of images
from multiple sensors may involve several types of pre-processing. This can include tasks such as
image registration, noise removal or contrast enhancement. All of these pre-processing tasks can help
improve detection performance and recognition of a concealed weapon. The next step is fusion

where the images from multiple sensors are combined to form one composite image. After fusion, the
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Figure 1: Processing steps for CWD

objects of interest are extracted from the composite image. Next, recognition algorithms are applied
to the extracted objects and shape descriptors that characterize different object features are computed.
Finally, the shape descriptors are interpreted to decide whether the object is a weapon or a non-

weapon.

The preprocessing stage is important to all of the following stages of CWD. In general,
imaging sensors are not located in the same physical location. Therefore, the source images need to
be registered before fusion. Original sensor images may also contain unwanted details such as
shadows, wrinkles, imaging artifacts, etc., which are not needed in the final fused image. These
details can adversely affect the performance of the recognition stage of CWD. Therefore, before
fusing the images it is desirable that most of these unwanted details are removed from the source

images. This will help improve performance by removing details that may cause false recognition.

The CWD fusion stage encompasses the steps of image transformation (or representation),



image fusion, and inverse image transformation. Image representation involves deciding what type of
transform to implement and is an important issue for fusion. If the source images are fused without
transforming to another domain, many of the essential details needed for recognition may not be
included in the fused image. At different resolutions, the details of an image generally characterize
different physical structures of the scene. For example, at coarser resolutions, the details correspond
to the larger structures. As the resolution gets finer, the details correspond to the smaller structures.
Depending upon the features being sought, multiresolution analysis such as the one based on the
wavelet transform provides a very useful tool for image analysis. The actual fusion rules for
combining the source images can utilize this resolution information to select the important details for

the composite image.

Extraction (or segmentation), recognition, and interpretation are represented as different
stages in the CWD block diagram but they are all related to one another. The extraction stage
attempts to isolate the possible weapon objects from the rest of the image based upon the
characteristics of different areas of the composite image. Several algorithms have been proposed to
accomplish this but, in general, the segmentation algorithms are image dependent. The recognition
stage includes defining measures that quantitatively describe the objects found in the previous stage.
Typical recognition measures include Fourier descriptors and moments. The interpretation stage

determines what group (weapon or non-weapon) the objects fall into based on prior knowledge.

In addition to the CWD stages discussed above, there may be a need to transmit images from
remote locations in certain law enforcement situations. Portable communications units are increasing
in popularity and wireless image transmission is one desired feature of these systems. However,
wireless communications systems are susceptible to fading phenomenon that cause bursty channel

errors. Image fusion will be discussed as a method to combat errors on these channels.

Section 2 describes the image registration algorithms for infrared (IR) and millimeter-wave

(MMW) images. Section 3 describes morphological filtering as a preprocessing step to remove




unwanted image details. Section 4 discusses the details of the steps used for image fusion. The
recognition and interpretation stages of CWD are described in Section 5. Section 6 shows the results
of applying these algorithms to IR and MMW image pairs. Section 7 describes the use of image
fusion for the transmission of images over wireless channels. Finally, Section 8 provides conclusions

about this research.
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Figure 2.1. Three IR and MMW image pairs that demonstrate the features of IR and MMW



2. IMAGE REGISTRATION

The IR imaging system used to detect concealed weapons was a quantum well longwave
camera, which was built by Martin Marietta Labs. The MMW imager consists of a single detector
that mechanically scans the scene in a raster pattern. It was built by Intelligent Machine Technology
of Irving, TX. Figure 2.1 shows typical IR and MMW image pairs and Table 2.1 lists some

specifications of the two imaging systems [CDF96].

Table 2.1: Some specifications of the IR and MMW imaging systems used to collect data

IR MMW
Operation band 8 ~ 12 um 3.2mm
Image size (in pixels) 256 x 256 192 x 254
Field of view 8.6 degree X 8.6 degree 18 degree x 24 degree
Lens /1.7 30 cm diameter aperture with /1
Minimum resolvable 0.007 Kelvin 0.2 Kelvin
temperature
Image time Not available' 3 min ~ 90 min *

1. AnIR image can be taken instantly.

2. This range corresponds to the resolvable temperature range 1.25 to 0.2 degrees K.




(a)

(b)

Figure 2.2: Two typical outdoor IR and MMW image pairs.

2.1 Characteristics of IR and MMW images

Three image pairs that demonstrate the features of both types of imagers are shown in Figure
2.1. Figure 2.1 (a) shows an image pair taken from IR and MMW imagers indoors. Figure 2.1 (b)
shows an IR and MMW image pair taken outdoors. Figure 2.1 (c) shows a MMW image taken
indoors and an equivalent outdoor MMW image. From Figure 2.1 (a) we can see the superior angular
resolution of the IR image and the better penetration of the MMW imager. The Beretta barrel, which
can not be seen in the IR image, can be seen clearly in the MMW image. In Figure 2.1 (b), similar
characteristics of IR and MMW imagers can be seen, but the MMW image in Figure 2.1 (b) looks

quite different from the one in Figure 2.1 (a) because of sky reflections. A further comparison of



indoor and outdoor MMW images is shown in Figure 2.1 (c)

From Figure 2.1 (c) we can find that the Glock is clearly detected in the indoor image but is
not shown clearly in the outdoor image. The reason for this is possibly the fact that the cold sky
reflections associated with the outdoor image have obscured the Glock. Nevertheless, the sky
reflection can not be detected by IR imagers as shown in Figure 2.1 (a). In the following paragraphs

we try to give a theoretical explanation of these phenomena.

Both the IR and MMW images are passive since they do not require any form of illumination
to perform the required imaging. Both sensors detect emitted energy based on Planck’s Law, which is

stated below:
Wi=2mcPh A (M. 1 ) (2.1

where W; is the black body spectral energy density, c is the speed of light, A is the wavelength, & is
Planck constant, k is Boltzmann constant, and T is the absolute temperature of the object being
imaged. For a given spectral band Equation (2.1) implies that the spectral energy density is a
function of temperature only. That is, warmer objects will emit greater energy/unit time than cooler
objects. In our case, the ratio of the emitted energy in the operation bands of IR and MMW imagers is
about 10%. Because of this, it is hypothesized that the MMW imagers “sees” an image that is a
composite of reflected and emitted spectral energy depending on the emissivities and reflectivities of
the objects within the image, while the IR imager “sees” only the thermal emissions and does not
detect reflections. Therefore, the location of the person being observed may greatly affect the ability
to detect the concealed weapon. More specifically, there is minimal cold sky reflection when a picture

is taken indoors, while the sky reflection can dominate the MMW image if it is taken outdoors.

Another important issue is the differences in angular resolution between MMW and IR
imagers. If the diffraction limited case is considered for both the IR and MMW imagers, we find that

the IR imager has far superior angular resolution. This is not unexpected since the equation for




diffraction limited angular resolution is:
Gr= /D (2.2)
where A is the wavelength and D is the aperture diameter. This equation implies that the IR imager’s

superior angular resolution (for comparable aperture diameters) results from the infrared’s much

shorter wavelength.

Thus, it is the difference of the operation band that results in the superiority of IR imagers in
terms of angular resolution and the superiority of MMW imagers in their ability to penetrate heavy
clothing. These two imagers provide complementary information that can be fused to improve CWD
performance. Based on available IR and MMW images, we observed the following three

characteristics:

1. Body portion is darker than the background in IR images.

2. Body portion is either darker or brighter than the background except for the
transition part in MMW images and the boundary of body is preserved quite
well.

3. The background is smoother than the body portion in MMW images.

The first two properties can be easily seen from Figure 2.1. In order to see the third property
clearly, we convolve each MMW image with [1, -1] and then take the absolute value. The resulting
images are shown in Figure 2.3. The gray level of each pixel in the resulting images represents the
difference of the gray levels of the pixel and the pixel to its right in the original MMW images.
Therefore, we can easily see that the background is smoother than the body portion in MMW images

because the background is darker than the body portion. All of the three properties are used while

developing our registration algorithm.



(@)

(d)

Figure 2.3: Smoothness of background in MMW images

2.2 Image Registration Review

Image registration is a procedure that determines the best fit between the objects in two or
more images. The main issue of image registration is to establish the correspondence between images
of the same scene. A broad range of image registration techniques have been developed for a wide
variety of imaging problems. Remote sensing [TBC86], biomedical imaging [SFF], and computer
vision [KJ91, Hor89] are typical application areas. According to the chosen feature space for
performing image registration, the methods can be divided into two categories: area-based and

feature-based methods. Excellent surveys of these techniques can be found in [Bro92, MF93].




2.2.1 Area-based registration methods
The area-based registration methods are also called ‘block matching’ methods. This method
attempts to match a reference image (or block) with a region in the test image. We review some

existing area-based registration techniques that utilize different similarity metrics.

Correlation method [Bro92]
Cross-correlation is often used for template matching or pattern recognition. For a template T
and an image I, where T is small compared to I, the two-dimensional normalized cross-correlation

function measures the similarity at each translation, (&, v), and is given by:

22, TN =u,y=v)
EE, T

Cluyv) = 2.3)

If the template matches the image at translation (u, v), except for an intensity scale factor, the cross-
correlation will have its peak at C (u, v). Thus, by computing C over all possible translations, it is
possible to find the region in the test image that is most similar to the template. Note that the cross-
correlation must be normalized since local image intensity would otherwise influence the measure. If
the transformation between the two images includes rotation and scaling, the cross-correlation
between the image and the template is computed for each allowable transformation of the template.
The transformation whose cross-correlation is the largest indicates the location of optimal
registration. However, the search space needs to be kept small. Otherwise, the computational cost

quickly becomes unmanageable.

Sequential similarity method
An algorithm more efficient than the traditional cross-correlation method is the sequential
similarity detection algorithm (SSDA) proposed by Barnea and Silverman [BS72]. They suggested a

similarity measure that is based on the absolute differences between the pixels in the two images:

10



E(u, v)=22|T(x,y)—I(x—u,y—v)|. (2.4)
Xy

In addition to improving computational efficiency, Barnea and Silverman introduced a sequential
search strategy. In the simplest case of translation registration, for each window of the image the
absolute differences between pixel pairs are accumulated and summed until a pre-determined
threshold is exceeded. The number of points examined before the threshold was exceeded is recorded
for each window. The window that examined the most points is assumed to have the lowest measure

and the best registration.

Fourier methods

The Fourier methods search for a match using information in the frequency domain instead of
the space domain. A basic technique utilizing the Fourier transform that can efficiently find the
translation between two images is phase correlation [KH75). Let f; and f> be the two images that

differ only by a displacement (xg, yo) i.e.,

fox, y) = fi (x-x0, y-yo) (2.5)
Their corresponding Fourier transforms F; and F; are related as follows:
—j27m(Sxotnyo
F2({m=¢ jan(ex "y)*Fl(f,ﬂ) (2.6)
The cross—power spectrum of the two images f; and f, with Fourier transforms F; and F; is defined as

1:1(5’ 77)Fz*(§a 77) =ej27t(€xo+ n¥o)
|E(& mF, (&, n)l

2.7

where F" is the complex conjugate of F. The shift theorem guarantees that the phase of the cross-
power spectrum is equivalent to the phase difference between the images. By taking the inverse
Fourier transform of the representation in the frequency domain, we will have an impulse function

whose location indicates the displacement needed to optimally register the two images.

11




Now if f} is the translated, rotated, and scaled replica of £, [RSC96], that is:

fo(x,y) = fi(axcosb, +aysin6, — x,, —axsinb, +aycosf, - y,) (2.8)

then, their Fourier magnitude spectra in polar representation are related by
1
M\(p, )= —M,(p/a, 6-6,) 2.9

where (xo,yo) is the displacement, 6, is the rotated angle, and a is the scale.

Furthermore, by converting the first axis to logarithmic scale, scaling can be reduced to a

translational movement (ignoring the multiplication factor 1/a), i.e.,

M (log p,0) = M,(log p—loga,0-6,) (2.10)

Then by using the phase correlation technique introduced previously, log a and 6, can be found. The

scale a can be determined accordingly.

2.2.2 Feature-based registration methods

Feature-based methods extract common features from the images to be registered, and then
they attempt to match the common points. Therefore, these methods are also called point-matching
methods. The general method for point matching consists of three stages. In the first stage, feature
points in the image are computed. In the second stage, feature points in the reference image, often
referred to as control points, are matched with feature points in the data image. In the last stage, a
spatial mapping, usually two 2D polynomial functions of a specified order (one for each coordinate)
is determined using these matched feature points. Mapping of one image onto the other is performed

by applying the spatial mapping and interpolation.
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Feature point extraction

Corners and vertex are typical feature points. Deriche and Giraudon [DG93] identify two
broad groups of corner and vertex detectors. The first group extracts corners/vertices from edges
represented as chain codes, by searching for points having curvature maxima or a significant change
in direction. Rutkowski and Rosenfeld [RR78] report the results of a comparison among five
different methods for determining corners from a chain code representation of detected, closed edges.
The second group detects corners/vertices directly from the gray-level signal by applying interest
operators. Several detectors for identifying and localizing interest points have been developed and
Deriche and Giraudon [DG93] review many of them. Schmid [Sch96} compares several gray-level
signal-based detectors based on several criteria and shows that the corner detector of Harris and

Stephens [HS88] gives the best results.

In addition to corners and vertices, line intersections [SKB82], centers of gravity for closed-
boundary regions [Gos86], and centers of windows having locally maximum variances {Mor81] also

have been used as feature points.

Point matching

The problem of point matching uses two sets of points extracted from the two images to be
registered. The first set, P, from one image contains m points. The second set, @, from another
image contains » points. Set Q is similar to set P, except that some points in P are missing and some
new points, not in P, are present. The positions of the remaining points in Q are the points common
with set P (within a given tolerance). The multi-point matching task is to eliminate all the points in Q

(or P) which do not have a match in P (or Q) and then to find the correct match between the common

points.

Most methods for point feature matching utilize geometric constraints based on the point
positions, neighboring matches and their disparities. Translation matrix methods [KRD80],

relaxation methods [RR80], clustering methods [SKB82], and center of gravity methods [Gos86]
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belong to this category. Another category utilizes radiometric constraints [SM95] based on
neighborhood characteristics of the feature, such as local image statistics. Combined radiometric and

geometric matching are also proposed in literature {GB85, TH94, Hei92).

Determination of the spatial transformation

Once a sufficient number of corresponding points are found, the parameters of any
transformation can be found by approximation or interpolation. Approximation uses transformation
parameters that are typically based on statistical methods such as least square regression analysis or
clustering. The transformation to be found does not match the control points exactly but finds the best
approximation. The number of matched points must be sufficiently greater than the number of
parameters of the transformation so that sufficient statistical information is available to make the
approximation reliable. Merickel [Mer] registers successive serial sections of biological tissue for

their 3D reconstruction using a linear least squares fitting of feature points.

For manual control points, there are usually fewer but more accurate matches, suggesting that
interpolation may be more applicable. Interpolation finds the transformation that matches the control
points of the two images exactly. There must be precisely one matched point for each independent
parameter of the transformation to solve the system of equations. The resulting transformation
defines how the image should be resampled. Bernstein [Ber76] uses this method to correct satellite
imagery with low frequency sensor-associated distortions as well as for distortions caused by earth
curvature and camera attitude and altitude deviations. Maguire et al. [MNR90] used this method for

registration of medical images from different modalities.

2.3. The Registration Algorithm

As indicated earlier, our goal is to develop an automatic procedure to register IR and MMW
images prior to fusion for the CWD application. These two images provide complementary

information that can be fused to enhance the overall information available and to better detect
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concealed weapons. It is a difficult problem because the two phenomenologies are different and they
generate quite different images. In both IR and MMW imaging, images are generated due to
temperature difference. However, light reflections also play an important role in forming the MMW
image and make it quite different from the corresponding IR image. Although the body shape can be
seen in both IR and MMW images, the two shapes are not exactly the same since the body shape in
MMW images is affected by light reflections. Therefore, feature matching in terms of points is not
feasible. In this section, we present the details of our new approach. We make the following

assumptions while developing our registration algorithm:

1. The distances between the object and the sensors are large enough so that the
object can be considered to be a planar object and its depth can be neglected.

2. The scale factor between the two images can be calculated based on distance
information and sensor parameters like the field of view (FOV).

3. The two sensors are placed in such a manner that no rotation is required for

registration.

The purpose of making the above assumptions is to ensure that the only pose parameters to be
found are x-displacement and y-displacement. The details of our feature-based registration procedure

are given in the following sections.

2.3.1 Idea behind our algorithm

We illustrate our idea by the following experiment. In Figure 2.4, (a) and (b) are two
complete extracted images of certain object. (c) is boundary of the extracted image. (d) is part of the
boundary. We correlate image (a) with images (b), (c) and (d) respectively and find the position of

the peak in each correlation function to register images (b), (c) and (d). Figure 2.5 shows the
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registered images. The result shows that the images (b)-(d) can be registered correctly. This

experiment demonstrates the following:

1. Ttis possible to employ binarized images to compute correlation for registration.
2. It is sufficient to have one high quality silhouette and the other one could be the
boundary of the silhouette.

3. The procedure works even when complete boundary is not available.

(a)
ok
[
o’
(b) (© (d)

Figure 2.4 Registration of Extracted Image Boundaries

Based on this idea, we developed the algorithm to register IR and MMW images for CWD
application as shown in Figure 2.6. First the scale factor is calculated based on available information
regarding distances and sensor parameters. The IR image is scaled prior to body shape extraction.
After body shapes have been extracted, binary correlation is used to determine x and y displacements
denoted by d, and d,. Finally, image cropping is used to yield the two registered images. The details

of the individual steps are described next.
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Figure.2.6. Block diagram for the registration algorithm

2.3.2 Body extraction algorithm for IR images

The goal of this step is to extract the silhouette of the human body from the given IR image.
Generally speaking, the human body temperature is higher than the temperature of the background.
Therefore, in IR images the body portion is darker than the background. This suggests that we can

use a thresholding operation to separate the body shape from the background.

Based on the available IR images, we found that the histograms of IR images were bimodal in
most cases. Therefore, in these cases, choosing the local minimum of the histogram as the threshold
results in very good segmentation. In cases in which the histogram has more than two major modes,
we found that one of the local minima results in very good segmentation. We determine the set of all
local minima, which are all potential threshold candidates and select a threshold from this set. The
criterion we use to select the threshold to extract the body shape is “shape connectivity”. The concept

of shape connectivity was first presented by Lie [Lie95] and defined through the co-occurrence matrix




[CM88]. It is also mentioned in [Lie95] that shape connectivity essentially represents the
area/perimeter ratio of the minor class region, or the compactness of the minor class region if shape
compactness [GW87] is generalized to any pattern. Here we use the area/perimeter ratio of the minor
class region to calculate the shape connectivity. Based on the set of available IR images, we observed
that the compactness of the minor region of the thresholded image using the desired threshold is
larger than that of the thresholded images using the remaining thresholds. Therefore, we select the

threshold that yields the largest value of compactness.

Due to its very nature, it is necessary to smooth the histogram before we find the set of local
minima. Here we modified the method suggested by Glasbey [Gla93] to smooth histograms. Let yy,
Y1> + + » Y1, denote the histogram of an IR image, where n is the number of gray levels used for the
given IR image. We smooth the histogram by replacing y; by (yi;+ yi+ yin; ) /3 fori=12,... n-2,
with yp and y,.; fixed. This procedure is repeated until there are M remaining modes in the histogram.
In our case, M=3 was found to be adequate. Figure 2.7 summarizes the steps. An example of the
algorithm is given in Figure 2.8. Note that the IR image is scaled prior to body extraction. Figures
2.8 (a) and 2.8 (b) show the scaled IR image and its corresponding histogram. The smoothed
histogram with M=3 along with threshold candidates is shown in Figure 2.8 (c). Four thresholded

images corresponding to the set of four potential threshold candidates are shown in Figure 2.8 (d) -

Locate local Threshold
: - resho
IRimage | Histogram minima as . Thresholding
—p | computation —| threshold —| selection > >
and smoothing candidates Extracted
body
sithouette

Figure 2.7. Body extraction algorithm for IR images
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Figure 2.8 (g). The threshold used and the compactness of each thresholded image are also shown.
Comparing the compactness measure r in Figure 2.8 (d) — Figure 2.8 (g), we choose the one shown in

Figure 2.8 (f) as the desired thresholded image.
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Figure 2.8: An example illustrating body extraction from IR images

2.3.3 Body extraction algorithm for MMW images

As we mentioned before, MMW images are formed due to both the temperature difference
and light reflections. In the available MMW images, we note that the portion of the body without
light reflections is darker than the background because its temperature is higher. But the parts of the
image with light reflections are lighter. The boundary of the body is also light due to reflections.
These observations suggest that we use two thresholds to extract the body shape. The resulting

silhouette will be approximate due to the phenomenology involved. By examining the available




MMW images, it can be observed that there is only one major mode in the histogram and the
histogram of the background falls within the main lobe of the histogram of the entire image.
Therefore, if we can take out the part of the image that corresponds to the main lobe of the histogram,
we can extract the object (body in our case) from the background. This requires determination of two
suitable thresholds to carry out this operation. We use the same smoothing procedure as for IR
images with M equal to one. After smoothing the histogram, we locate the mode and the two points of
inflection. They are denoted as P, f,, and f, respectively. Then we determine the two thresholds t; and

t; as follows:
t=P-L*(P-f))
ty=P+L,*(f,-P)

where L, and L, are two constants that need to be found empirically.

Once we have the two thresholds, we threshold the image with each threshold separately,
invert one of the thresholded images, and then add them up to obtain the approximate silhouette of the
body. Figure 2.9 summarizes the steps and an example is shown in Figure 2.10. Figures 2.10 (a) and
2.10 (b) show the original MMW image and its corresponding histogram. Smoothed histogram with

M-=1 along with points of inflection and thresholds is shown in Figure 2.10 (c). The two thresholded

> Thresholding
MMW Histogram Determine t, tby [P S8
image computation | g, %ocate P.f, 3! (L)
and 2 -
smoothing t,=P+L,*(f,-P) N Thres}:o:g1ng
;x:\l/:iii)n e Extracted
P silhouette

Figure 2.9: Body extraction steps for MMW images

images are shown in Figures 2.10 (d) and 2.10 (e). Figure 2.10 (f) is the composite of the two
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thresholded images and represents the body shape determined by our algorithm.
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Fig.2.10 An example illustrating body extraction from MMW images

2.3.4 Binary correlation algorithm

The goal of this step is to determine the x and y displacements by correlating the binarized IR
and MMW images. We use 1 and -1 to represent the two levels of the thresholded images and use
256 x 256 FFT and IFFT to compute the 2D correlation function. The result of correlating the

extracted IR silhouette shown in Figure 2.8(f) with the extracted MMW silhouette shown in Figure

2.10 (f) is shown in Figure 2.11(4-8) (a). The correlation value at the point (x, y) is equal to the
correlation of the binarized images when the top left point of the IR image, i.e. the point (1,1),
corresponds to the point (x, y) in the MMW image. Note that there are multiple peaks. They result
from the imperfect silhouette extracted from the MMW image due to noise and unwanted light

reflections. There are two ways to overcome this problem. First, we can construct a mask for the




MMW image that removes the effects of noise and light reflections. The other approach is to
construct a mask on the 2D correlation function to select the right peak. In practice, we found that the
latter is easier to implement and was used in our algorithm. Figure 2.11 (b) shows the mask that will
be used to select the right peak. Figure 2.11 (c) is the correlation function after applying the mask.

The steps used to construct the mask shown in Figure 2.11 (b) are described in the next section.

5000

300

50 100 150 200 250

(a) (b) (©)

Figure 2.11: 2D correlation function before and after applying the mask

2.3.5 Mask construction algorithm

Light reflections hamper the extraction of body silhouettes from MMW images. They exist
not only in the boundary of the body but also in the image background. Therefore, the thresholded
MMW image contains a lot of noise that results in multiple peaks in the 2D correlation function.
Sometimes the strengths of the incorrect peaks are stronger than the strength of the correct one.
Therefore, it is necessary to develop a procedure to identify the right peak that yields correct x and y

displacements. We take advantage of the observation that the background of the MMW image is
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smoother than the body portion. Using this property, we developed the following algorithm to

construct a mask to select the right peak.

We first convolve the original MMW image with [1 —1] and then take the absolute value so
that the differences between each pixel and the pixel to its right can be visualized easily. The result,
denoted by I, provides av measure of image smoothness. After that, we threshold I, and pass it
through a low pass filter and threshold it again to obtain a mask on the MMW image. The first
threshold is determined from the histogram of I,, This histogram is normalized such that the
maximum value of the histogram equals one. Then the threshold is chosen to be 2*q, where ¢ is the
smallest value on the x-axis that yields a slope larger than -0.1. The second threshold is chosen to be
half of the maximum value of the low pass filtered image. The mask thus obtained reduces the region
where the body can be found. From maskl we can construct another mask, mask?2, to identify the
right peak in the correlation function. This is accomplished by shifting mask1 by an amount [-Xg, -

Ygl, where [Xg, Yg] is the center of gravity of the silhouette extracted from the IR image.

Figure 2.12 summarizes the steps of the algorithm, and one example is given in Figure 2.13.

Figs. 2.13 (a) and 2.13 (b) show I; and its histogram. The threshold ¢ and point g are also shown.

Original MMW c ot P L
image onvolution an I Thresholding OW pass Thresholding
T2 B! ke the absolute |~ —P filtering [P
value
Mask1
Scaled threshold IR image Computation of [-Xg,-Yg] Shift mask1 by
> the center of P [-Xg,-Ygl Mask2
gravity of the IR >
image

Figure 2.12: Block diagram for mask construction algorithm

Fig. 2.13 (c) is the thresholded image of I, using threshold 7. Fig. 2.13 is the thresholded image after

passing it through a low pass filter, which is maskl. Mask?2 is shown in Fig. 2.13 (e), which is the




mask used in the previous section to select the right peak. Note that the dimensions of mask1 are the
same as the dimensions of the MMW image, while the dimensions of mask2 are the same as the
dimensions of the 2D correlation function. The complete registration algorithm including the mask is

shown in Figure 2.14.
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Fig.2.13 An example showing mask construction steps
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Figure 2.14. Complete registration algorithm

2.4. Experimental Results

Five IR and MMW image pairs are used in our experiments. The size of each IR image is
257x258 and the size of each MMW image is 192 x 254. Each pair of images is assumed to be taken
simultaneously and the transformation between IR and MMW images is assumed to be a rigid body
transformation without rotation as stated previously. Figure 2.15 shows typical IR and MMW images

with distances from the sensor to the person.

First, we assume that the scale factor can be calculated from the sensor distances and
parameters. However the formula for calculating the scale factor can not be easily derived because
the formation of IR and MMW images is quite different from the formation of optical images.
Instead of calculating the scale factor directly, we try to get it empirically. By manually registering
the IR and MMW image pairs we collected, we found the scale factor between the IR and MMW
image is about 0.32 if they are taken from the same distance. The scale factor between any IR and

MMW image pair is than approximated by S = 0.32*dr/dymw Where dpg is the distance from the
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object to IR sensor and dwwmw is the distance from the object to MMW sensor. The parameters used in

all of the five experiments are: number of modes ,M = 3, and constants L1 =1, and L2 = 1.5.

Figures 2.16-2.20 show the experimental results from the five image pairs shown in Fig 2.15.
The original image pairs, the extracted binary images, and the registered image are given in each
figure. The registered MMW images are shown with the edges of the registered IR image

superimposed. The scale factors and the x-y displacements are listed in Table 2.2.

By comparing the registered MMW image and the boundary of the registered IR image for
the five examples, we see that the g59/1419 and g62/14+8 pairs (Figures 2.19 and 2.20) are not
registered satisfactorily. One reason the algorithm did not work well for these examples is that during
data collection the sensors were neither co-located nor exactly parallel to each other. The
transformation between the IR image and MMW image in Figure 2.20 includes rotation inA addition to
simple x and y displacements. So the assumption that only x and y displacements are needed to
register the image pairs is violated. Since we are taking advantage of body silhouettes to register the
IR and MMW image pairs, it is essential to obtain the complete shape of the body. In the pairs of
Figures 2.16-2.18, the body portion was completely visible in the IR image, while in the £59/1419
pair of Figure 2.19, the upper portion of the shoulder was not included in the IR image. Therefore,

misregistration in the vertical direction is quite large.

Table 2.2: Registration parameters

dx dy s
835/13t6 pair 26 -15 0.42
839/13t7 pair 29 10 0.40
832/13t5 pair 20 9 045
859/1419 pair 8 -22 0.36
862/1418 pair 22 -1 0.36
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g35,d=16ft g39,d=19 ft g32,d=13 ft

13t6, d = 12 ft 13t7, d=15ft 13t5,d =9 ft

g62,d =14 ft g59, d= 14 ft

1419, d =12 ft 148, d =12 ft

Figure 2.15. Image pairs used in our experiments. d is the distance between object and imager.
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Figure 2.16: Registration results for the g35 pair.
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Figure 2.17: Registration results of the g39 pair.
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Figure 2.19: Registration results of the g59 pair.
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Figure 2.20: Registration results of the g62 pair.
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3. MORPHOLOGICAL FILTERING

Original sensor images may often contain details such as shadows, wrinkles, imaging
artifacts, etc., that are not needed in the final fused image and can adversely affect the performance of
the recognition stage of CWD. Therefore, before fusing the images, it is desirable that they go
through a preprocessing in which these unwanted details from an image are removed. This would
help improve the recognition performance after fusion. Here, we use morphological filters in the

preprocessing stage to clean out the unwanted details.

Mathematical morphology [GW87] is an image processing tool for extracting image features
which are useful for representing or describing shapes. It can also be used for pre-processing such as
filtering or removing objects within a given size range. The basis for mathematical morphology is set
theory, where the sets may represent shapes of objects in an image. First, we will explain

morphology (or morphological filtering) for binary images and later extend it to gray-scale images.

3.1 Binary Morphology

Most morphological operations are built upon two basic operations, dilation and erosion.
Before defining these operations, some notation will be explained. Let A, B be sets in Z ? with
coordinates a = (a;,a2) and b = (b;,b;) in two dimensional space being elements of A and B,

respectively:
A= {ala = (a1 ,a, )} and B = {b|b = (b, ,b, )} .
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The translation of set A by x = (x1,x,) is defined as
A = {clc =a+x,a€ A}.
The reflection of set A is defined as
A= {x|x =-a,a € A}.
The complement of set A is
A ={xlxe A}.

So the complement of set A, A°, consists of all elements in Z> which are not in A. The difference

between sets A and B is defined as
A-B={xxeA,xeB}=AnB".

Now we define the morphological operations dilation and erosion for binary images. The

binary dilation of A by B, where A is the object and B is called the structuring element, is defined

as
a®B={xB, nA=02}={x[B, na]c 4}

This process can be explained as all the translations x of B where I§x and A overlap by at least one

element. So, the operation of dilation expands the object in the image, or increases the number of

elements in the dilated result. The binary erosion of A by B is defined as

e
A B={xB, c A}
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This process can be explained as all the translations x of B where B, is completely
contained in A (all elements in B, must overlap with elements in A for x to be an element in the

eroded result). So, the operation of erosion shrinks the object in the image, or decreases the number

of elements in the eroded result.

Figure 3.1 demonstrates binary dilation and erosion for an image. Figure 3.1(a) shows the
original image and the structuring element. Figure 3.1(b) shows the difference between the original
image and the dilated portion and the dilated result. The image on the left shows the original object
in gray with the additional dilated portion shown in black. We can observe that gap on the left was
filled in by the dilation operation. The image on the right shows the dilated result in black. The
difference between the original object and the eroded portion and the result of erosion are shown in
Figure 3.1(c). The image on the left shows the original object (in black and gray) and the smaller
eroded portion in black. The portion that was removed is in gray. We see that the narrow part in the
center of the object and the two narrow parts on the right side of the object are removed. The image

on the right shows the final eroded object.

Now that the basic morphological operations have been defined, we define two more
commonly used operations that are built upon dilation and erosion. These two operations are called

opening and closing. The binary opening of A by B is defined as

AocB=(A© B)®B.

In words, the opening of A by B is A eroded by B followed by a dilation by B. This operation
will smooth the object contours and remove the narrow parts of the object which are smaller than the

structuring element. The binary closing of A by B is defined as

AeB=(A®B)© B.




In words, A closed by B is A dilated by B followed by an erosion by B. This operation will also
smooth the contours but, instead of removing narrow parts, will fill in narrow gaps in the object

which are smaller than the structuring element.

(a)
®)
©

Figure 3.1: The basic morphological operations: (a) original image and structuring element, (b) the dilated
image and (c) the eroded image.
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An example of binary opening and closing is given in Figure 3.2. The same object and
structuring element as in Figure 3.1 are used for this example. Figure 3.2(a) shows the result of
erosion followed by dilation that gives the opened result. The left image shows the object (black and
gray) eroded first (black portion only). Then the right image shows the final opened result in black
where the gray portion is what was removed from the original object. The result is the black part of
the figure on the right. Figure 3.2(b) shows the result of dilation followed by erosion that gives the
result of closing the image. The image on the left shows the dilation of the original object (shown in
gray). On the right, the final closed result is shown in gray and black, where the portion that was

added to the original object by this operation is black.

al a3l

(2)

(b)

Figure 3.2: The (a) binary opening - erosion followed by dilation and (b) binary closing - dilation followed by
erosion.




3.2 Gray-scale Morphology

Now the concepts of dilation, erosion, opening and closing are extended to gray-scale images.

Instead of dealing with sets such as A and B in the previous discussion, we use functions of the
form f (x, y) and b(x, y), where f (x, y) is the input image and b(x,y) is the structuring element.

These operations are now in three-dimensional space instead of two-dimensional space and the value
that changes is the graylevel not the spatial coordinate. Here we translate the image instead of the
structuring element, but the operations can also be performed by translating the structuring element.

Gray-scale dilation is defined as

(f ®b)(s.1)= max{f(s—x,t— y)+b(x,y)(s—x),(t - y) € D,3(x,y) € Db}

where D, and D, are the domains of f (x,y) and b(x,y), respectively. This operation will

brighten the entire image and fill in any dark valleys smaller than the structuring element, because it
chooses the maximum value within a window determined by the size of the structuring element.

Gray-scale erosion is defined as

(f © b)(s,t) = min{f(s+ x,t+y)=b(x,y)(s+x).(t+y) e D, (x,y) e Db}.

This operation tends to darken the overall image while removing any bright peaks that are smaller
than the given structuring element. This is because this operation chooses the minimum graylevel

within a window.

A one-dimensional example of gray-scale dilation and erosion is given in Figure 3.3. The
original signal (this can be thought of as one row or column of an image) is shown in Figure 3.4(a).
The structuring element used in this example was 1x5 with magnitude equal to one. Figure 3.4(b)

shows the relation of the dilated signal (solid line) to the original signal (dotted line). We can observe
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that the values are larger over the entire signal, and the valleys smaller than five pixels wide were
removed. Figure 3.3( ¢) shows the result of gray-scale erosion in comparison to the original signal.
This shows the eroded signal (solid line) in comparison to the original (dotted line). We see that the
values over the whole signal are lower, and the peaks smaller than five pixels wide were removed.
Now the expressions for gray-scale opening and closing are defined, they have the same
structure as the binary case. The gray-scale opening of an image f (x, y) by structuring element

b(x,y) is defined as
fob=(f ©b)®b.
The gray-scale closing of f (x, y) by b(x,y) is defined as

feb=(f®b)©b.

Opening will remove the bright peaks of the image which are smaller than the structuring element but
leave the dark valleys unaffected. Closing will remove the dark valleys of the image but leave the
bright peaks unaffected. Neither operation will affect the overall brightness of the image. So, if an

opening is followed by a closing with the same structuring element, bright peaks and dark valleys will

be removed.

Some properties of opening and closing are now given which apply to both the binary and
gray-scale cases. First, opening and closing are not commutative. Therefore, for most images a

change in the order of operations will produce different results:

(fob)ob=(f eb)ob.

In addition, opening and closing are both monotonically increasing and idempotent.




If ficft then (f1°b)-g(f2°b) and(f1°b);(f2'b)

and (fob)ob=(fob) and (f eb)eb=f eb.

(a)

(0)

(¢)

Figure 3.3: Basic gray-scale operations: (a) the original signal, (b) the dilated signal and (c ) the eroded signal.
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An example of gray-scale opening and closing are shown in Figure 3.4. The signal and
structuring element of Figure 3.3 are used here. Figure 3.4(a) shows the result of gray-scale opening
(solid line) in relation to the original signal (dotted line). It shows that the bright peaks were removed
from the signal while the other values were unchanged. Figure 3.4(b) shows the result of gray-scale
closing (solid line) in relation to the original signal (dotted line). It shows that the dark valleys were

removed from the signal while leaving the other gray values unchanged.

(b)

Figure 3.4: Relationships between (a) gray-scale opening and the original signal and (b) gray-scale closing and
the original signal.
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3.3 Mathematical Morphology for CWD

Since mathematical morphology is suited for describing or representing shape in an image, it
is a useful tool for “cleaning” gray-scale images. If we choose the structuring element to be larger
than the unwanted details in the image, we can remove both the dark and the bright details by filtering
with an opening followed by a closing (or closing followed by an opening). Another useful aspect of

morphological filtering is that we can extract objects of a certain size range from the image.

Examples of using morphological filtering for noise removal are shown in Figure 3.6. The
images shown are from IR and MMW sensors. The original images were not registered, so the
examples here use images (Figure 3.5) which were manually registered. Figure 3.6(a) shows the
morphologically filtered versions of the IR and MMW images using a 3 by 3 filter (opening followed
by a closing). Figure 3.6(b) shows the morphologically filtered versions of the IR and MMW images
using a 5 by 5 filter. Figure 3.6(c) shows the morphologically filtered versions of the IR and MMW
images using a 9 by 9 filter. Visually, the MMW images do not seem to change much after
morphological filtering but the IR images appear to contain less detail as the filter size increases. The
filtered IR images appear smoother around the arm and neck areas, but the contrast around the gun

remains about the same.

Figure 3.5: The original IR and MMW images (manually registered).
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Figure 3.6: The morphologically filtered versions using (a) a 3 by 3 filter (b) a 5 by 5 filter and (c) a9 by 9
filter.




4. IMAGE FUSION

A single sensor, depending on its features and/or viewing position, may not receive all the
information necessary for detecting an object by human or computer vision. If several sensors with
different features and/or viewing positions are used then the image information obtained from each
one can be combined with the others. The use of multiple sensors in fields such as remote sensing,
medical imaging, and automated machine vision has increased in the past decade. As a result of this,
techniques for fusing different sensor images to form a composite image have emerged. This final
composite image has more complete and detailed information content than the individual source
images. Therefore, the composite or fused image is more useful for human perception as well as for
automatic computer analysis tasks such as segmentation, feature extraction, and object recognition.
In the case of CWD, one imaging sensor may not be able to detect a weapon depending upon the type
of clothing a person may be wearing or the distance between the imaging sensor and the person. The
goal of image fusion for CWD is to provide a composite image that improves the capability of

detecting weapons on people.

The straightforward approach to image fusion is to take the average of the source images, but
this can produce undesired results such as a decrease in contrast. Our fusion method involves
multiresolution image decomposition based on the wavelet transform. This transform allows us to
fuse details at different resolutions. Burt [Bur84] first proposed the approach as a model for binocular
fusion in human stereo vision. His implementation used a Laplacian pyramid and a "maximum"

selection rule. Others have used similar pyramid methods, including the wavelet transform, and
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different selection rules to fuse images [Toe90, PLA91, BL93, LMM95]. First, an image pyramid is
constructed for each source image by applying the wavelet transform to the source images. This
transform domain representation will emphasize important details of the source images that will be
useful for choosing the best fusion rules. Then, using a feature selection rule, a fused pyramid is
formed for the composite image from the pyramid coefficients of the source images. Finally, the
composite image is obtained by taking an inverse pyramid transform of the composite wavelet
representation. Figure 4.1 demonstrates the general image fusion process. This figure illustrates the

fusion process for two source images, but the process can be implemented for combining multiple

source images.

Multiresolution decomposition and reconstruction based on the two-dimensional wavelet
transform will be described in Section 4.1. The image fusion rules will be described in Section 4.2

and examples shown in Section 4.3.

— S
— A

Source Source Fused Fused
Images Transforms Transform Image

Figure 4.1: General image fusion process.

4.1 Wavelet Decomposition and Reconstruction

Multiresolution image decomposition provides a unique and very useful analysis tool for

image processing applications. This type of transform is able to separate details of an image by scale
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and orientation. At different resolutions, the details of an image generally characterize different
physical structures of the scene. For example, at low resolution, the details correspond to the larger
structures in the image. As the resolution gets finer, the details represented in the image also get
finer. Depending on the features being searched, multiresolution analysis such as the one based on
the wavelet transform provides a very useful mathematical tool for image representation. The idea
behind multiresolution analysis is to represent an n-dimensional signal by lower resolution
approximation (A) and detail signals (D). These detail signals provide the difference between two
approximation signals at successive resolutions. The representations discussed here are for two-

dimensional signals (images) with approximations at resolutions 2/, for j < 0.

The wavelet transform represents an arbitrary function, f, as a superposition of wavelets.
These wavelets are a group of functions that are generated from translations and dilations of one
function, ¥, known as a mother wavelet. The wavelet transform is capable of providing uncorrelated
data at different resolutions. It is also able to separate details by scale and orientation. Therefore, the
wavelet transform provides a complete and orthogonal multiresolution decomposition.
Multiresolution analysis using the wavelet transform actually involves two functions, a scaling
function ¢(x) and a mother wavelet y(x). The scaling function is used to obtain the approximation
signals and the wavelets are for the detail signals. Wavelet decomposition is computed by using
pyramidal algorithms that are based on convolutions with quadrature mirror filters. Reconstruction of
the original image can be accomplished with similar pyramid based algorithms. The following
sections will describe decomposition and reconstruction for the two-dimensional case for image

analysis. Also, the use of biorthogonal filters will be discussed for image analysis.

The wavelet representation for two dimensions can be computed by using a separable

pyramidal algorithm. At each level, the approximation signal A:ﬂ. f is decomposed into A;’ [

D; s D22 . f ,and DZ3 . f where Ald [ is the image at the original resolution. The four subimages
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Tows 6 l,z _> D;f
G 12
B l2 > D)f
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G l2 > Duf
H 2
3 l2 > AL f—>

Figure 4.2: One level wavelet decomposition from resolution 2*! to 2 for two-
dimensional signal.

correspond to a low-resolution image and vertically, horizontally and diagonally oriented detail

images. The filters used for this decomposition are the quadrature mirror filters H and G from the

one-dimensional analysis. For one level of two-dimensional wavelet decomposition, the rows of

A;M f are convolved with one-dimensional filters H and G and sub-sampled by two. Then, the

columns are convolved with one-dimensional filters H and G followed by sub-sampling the
columns by two. The wavelet transform of image Ald fis coniputed by repeating this process for
resolutions corresponding to —1 = j = -J, where J is the desired number of decomposition levels.
Figure 4.2 shows a block diagram of one decomposition level from resolution 2o 2,

A pyramidal algorithm can also describe two-dimensional wavelet reconstruction. At each

level, the approximation image A;j” f is reconstructed from subimages A:j I, D; s Dzz,. f,and

D; ; f . First, zeros are inserted between neighboring row coefficients in each of the subimages, and

the rows are convolved with a one-dimensional filter. Then, zeros are inserted between neighboring

column coefficients and the columns are then convolved with another one-dimensional filter. The

filters used for reconstruction are the quadrature mirror filters H and G. The image Ald f is




rows

D23,~f — S M G columns
> T2 G M
D f ) H
o 4 AL,
Duf —s 1 G 2
d T2 H [—
A;jf ——— T2 > H

Figure 4.3: One level wavelet reconstruction from resolution 2’ to resolution 2*! for
two-dimensional signal.

reconstructed by repeating this process for levels —J < j < -1. Figure 4.3 shows a block diagram of the

reconstruction process from level 2 to resolution level 2*'.

For purposes of fast computation, the filters for decomposition and reconstruction should be
short. However, in order to cascade filters in pyramidal structures without needing phase
compensation, the filters should also have linear phase. There are no nontrivial orthonormal linear
phase filters for exact reconstruction. In order to preserve linear phase, the orthonormality
requirement can be relaxed by using biorthogonal bases filters. The use of biorthogonal bases still
keeps the same decomposition method as in the orthogonal case, but reconstruction uses filters #* and
g’ which may be different from % and g. For exact reconstruction, the following restrictions on the

filters are imposed:

g =" -h(l-n)
E(n)=(-1)" -K(-n)

S h(n)-h(n+2k)=6,,.
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4.2 Image Fusion Algorithm

First, the two-dimensional wavelet transform is used to construct a multiresolution
representation of each source image. Once the source images are decomposed, the details are
combined to form a composite decomposed image. This method allows details at different levels to
be combined independently so that important information is maintained in the final composite image.
We have developed image fusion algorithms for concealed weapon detection (CWD) applications.
Fusion is useful in situations where the sensor types have different properties, e.g., IR and MMW
sensors. Fusing these types of images results in composite images that contain more complete

information for CWD applications such as detection of concealed weapons on a person.

We apply Burt’s feature selection algorithm [Bur84] for image fusion. In this algorithm,
salient features are identified in each source image, then are copied to the composite image. The

salience of a feature is defined as a local energy in the neighborhood of a coefficient:

s(i,j,k)=22c(i+m,j+n,k)2

where (i, j) is the location of the current wavelet coefficient c(i, j), k is the decomposition level, and
(m, n) define a window of coefficients around the current coefficient. The size of the window is
typically small, i.e. 3 by 3. Less salient features that may partially mask the more salient features are
discarded. In this way, the features in the composite image are obtained at full contrast and double

exposure artifacts are avoided.

At a given resolution level, the fusion algorithm uses two distinct modes of combination:
selection and averaging. In addition to the salience measure, the image fusion algorithm uses a match
measure that determines the mode of combination. The match measure at location (i, j) and

decomposition level k is defined as
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23 Y c,li+m, j+nk)-cy(i+m, j+n,k)
M i 1. k)= m__n
wli-) k) S0, k)Sy (i, j. k)

where subscripts A and B refer to the corresponding source image for the coefficients and salience
measures. To determine whether selection or averaging will be used, My is compared to a threshold,
o. At each coefficient position the salience measure determines which source coefficient is chosen in
the selection mode. If M,z is less than or equal to @, then the coefficient with the largest salience is

placed in the composite transform while the less salient coefficient is discarded. The selection mode

is implemented as:

celisjok) = cai,j.k) ifS,(3i,j,k)=S,(i, j.k)
o ca(isj k) ifS,(i,j,k)<S,(i, k)

where cc are the coefficients in the composite wavelet transform.

If Myp is greater than a, the source patterns are more similar and the weighted average is
calculated from coefficients of both source transforms. The weights used for averaging are defined as

follows:

1 1-M
wmm=5(1‘( "B)(l—a))’

Wiax =1_W“‘i"’

where w,,, is applied to coefficient with lower salience and w,,, is applied to the coefficient with
higher salience. In the averaging mode, the composite transform coefficient is the weighted average

of the source coefficients and is implemented as:

(Wi o) ol )+ W (i o) (i R) I SAG SRS S R)
G (k) calis oK) W (i, K)-calis jK) I S,(L K> S5 oK)
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After all of the coefficients in the composite wavelet representation are obtained, the inverse wavelet

transform is performed to get the final fused image.

4.3 Image Fusion Examples

For testing our image fusion algorithms, we were provided with images from IR and MMW
sensors for the CWD problem. First, we tested the fusion algorithm on synthetically generated
images where different portions of a gun were visible in the source images. Next, we fused images
where both source images were obtained from IR sensors with different parts of the gun partially

hidden in each image. The third type of image pairs we fused was from both IR and MMW sensors.

©)

Figure 4.4: Synthetic image pairs: (a), (b) source images and (c) result.
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Our first example deals with fusing the synthetic image pairs. Figure 4.4(a) and (b) show the
source images used for fusion. The handle of the gun is visible in one image and the barrel is visible
in the other image. These images were used using two levels of decomposition and a threshold of o =
0.5. In Figure 4.4(c), the entire gun is visible and the overlap from the source images is evident. Two
dark lines can be seen at the middle of the gun that show where the parts of the source images

overlap.

To demonstrate the usefulness of fusion, the IR image pairs were produced by covering part of the
concealed weapon so that a different part was visible in each image. For this example, the images
used for fusion were obtained from actual IR imaging sensors.  Figure 4.5(a) shows that the left side
of the gun is visible and Figure 4.5(b) shows that the right side of the gun is visible. The person in
the images is holding markers to show the ends of the gun. These markers actually show that the
images are not correctly registered. This happened because the images were taken at different times
to simulate the situation where complementary parts of an object are visible. In Figure 4.5(c), the
whole gun can still be seen although no registration was used before fusion. For the example we also

used two decomposition levels and o = 0.5.

Finally, we fused IR and MMW source images to form a composite image. In these
examples, the gun is visible in both images, but at different resolutions and degrees of visibility. Here
we show that our fusion algorithm also works well for images from different sensors. For this case,
the IR sensor provides better spatial resolution while the MMW sensor provides better clothing
penetration. Figure 4.6 shows the original unregistered IR and MMW images. For this example, the
images were manually registered before applying the image fusion algorithm. The outline of the
person’s body is more visible in the IR image and the gun is apparent in both images. The results of
fusing the original IR and MMW images and the morphologically pre-processed images are shown in
Figure 4.7. Morphological filters of increasing size are used for each set of fused images in Figures

4.7(b)-(d).
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(a) (b)

©

Figure 4.5: IR image pair: (a), (b) source images and (c) fused result.

(®

Figure 4.6: Original (a) IR and (b) MMW images.




(b)

(@

Figure 4.7: Fused images of the (a) original IR and MMW images and (b) filtered IR and MMW images using a
3 by 3 filter, (c) a 5 by 5 filter and (d) a 9 by 9 filter.

Thresholding (using Otsu’s method [Ots79]) was used to compare the fused results to each
other and to the original IR and MMW images. Figure 4.8 shows the thresholded results for the
original unfiltered IR and MMW images without fusion. The IR image shows the gun, but it is also
connected to wrinkles on the lower part of the image. In addition, several other wrinkles are visible

for the IR image. No shape resembling a gun is apparent in the MMW image.
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Figure 4.8: Thresholded results for original (a) IR and (b) MMW images.

Figure 4.9 shows the thresholded results for the fused images with and without preprocessing.
The result without pre-processing in Figure 4.9(a) shows the gun shape is separated from the rest of
the objects. In Figure 4.9(b), the source images were pre-processed with a 3 by 3 filter. The result
shows that fusion improves the ability to segment out the gun shape over the individual filtered
images. It also shows a slight improvement in comparison to the result in Figure 4.9(a). Notice that
some of the wrinkles and other artifacts have disappeared. Figure 4.9(c) also shows improvement in
comparison to the result shown in Figure 4.9(a). More of the wrinkles and other artifacts have
disappeared, but the gun shape remains the same. In Figure 4.9(d), the fused image is much improved
over the other fused results. We notice that all of the wrinkles appear to be gone and the smaller
artifacts have disappeared, but the gun shape remains the same. These results show that fusion, based

on these thresholded images, is expected to improve object recognition. In addition, using

morphological filtering before fusion helped remove artifacts while leaving the basic gun shape

NG

intact.
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(d)

Figure 4.9: Fused results using the (a) original and (b) filtered images with a 3x3, (c) a 5x5 and (d) 9x9 filter.

54



5. SHAPE RECOGNITION

In this stage of the CWD system, we assume that the images are acquired from the sensors,
registered and fused based on the methods described in the previous sections. Then through a

segmentation and extraction algorithm the shapes to be recognized are obtained.

In general, it is not known how the shapes appear in the observed frame. They could be
rotated with an angle and/or scaled in size and/or shifted in position. So, in the recognition process
these unknown conditions must be handled properly in order to be successful. Therefore, the
algorithms to be considered should be rotation, scale and translation invariant. Three algorithms are
considered based on these criteria for our system. Below, these algorithms are described in detail,

then the recognition process for the objects (as weabon and non-weapon objects) is explained.

5.1 Recognition Algorithms

Recognition algorithms may classify the same shape differently, so our object recognition
method uses several different algorithms that determine whether a weapon is present or not present.
The algorithms we are using include recognition metrics such as Fourier descriptors, moments and

compactness.

5.1.1 Moments

First, regular moments are described for an image, f(x, y), of size N, by N,. These moments

are calculated using all of the pixels in the image. The (p+g)-order moment of the image is defined as
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and the centroid of the image, (X,¥), is given by

Moments of Region Boundaries:
In the next step, we define a different type of moment descriptor. Instead of using all the
pixels of the shape of interest, we only consider the sequence of contour pixels (boundary pixels) of

the shape. Let the coordinates of the N contour pixels of the object be described by an ordered set

(x(7), y(i)), i=12,...,N. Next we compute the Euclidean distance between the centroid,
(X,¥), and the ordered sequence of the contour pixels of the shape. Let us denote this set of
Euclidean distances as d (i), i =1,2,..., N . This set forms a single-valued, one-dimensional, and

unique representation of the contour. Based on the set d (i), the p-th moment is defined as [GS87]
1 N
—_— AN 14
m, == 21d()]
i=1
and the p-th order central moment is defined as
1 N
- N P
M, = > M 1d@) —m]1?.
i=1

Using these moment definitions, a feature set (Fj, F,) is described by

(M2)1/2 (M4)”4
= — F2 =
m, m,

F

Note that these values are dimensionless, and rotation, scale, and translation invariant.
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The first algorithm, which is based on moments techniques, uses the quantity (F,-F;) as the

feature information of the shape which provides very good distinctive information for the roughness

of the shape [SRD94].

5.1.2 Fourier Descriptors:

In this approach, again the boundary pixels are used to extract the feature information.
Suppose that there are N points on the contour of a shape (region). The x-y coordinates of each point
in the contour are represented as a complex number in a complex plane. The ordered contour

sequence may then be written as a complex sequence Z;
z;,=x+]Jy; i=012,.,N-1.

Note that the complex number sequence is periodic with each transversal of the complete boundary.

The Fourier descriptors (FD) are defined as
1 N-~1
B(k) = ~ Y z;exp[—j2mki/ N] k=01,.,N~1
i=0

Before using the FDs for shape analysis, we need to eliminate their dependence on orientation, size,
position, and starting point of the contour. Based on the following properties [GW87], the Fourier

descriptors are modified accordingly ;

1) A change in the position of the contour (translation) changes the value of B(0)

only. So, by setting B(0) = 0, the FDs become translation invariant.

2) To change the size of the contour (scaling) the Z;s need to be multiplied by a

scalar. This is equivalent to multiplying B(k)s by a scalar. So if the FDs are divided

by B(1) then they become normalized and independent of scaling.
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3) Rotating the contour in the complex plane is equivalent to multiplying each
coordinate by exp(jB) where 6 is the angle of rotation. Due to linearity of the Fourier
transform, it results in multiplying the frequency domain coefficients, B(k), by

exp(jO).

Shifting the starting point of the contour in the complex plane corresponds to multiplying the
k-th frequency coefficient, B(k), in the frequency domain by exp(jkT), where T is the fraction of a
period through which the starting point is shifted. Note that as T goes from 0 to 2, the starting point

traverses the whole contour once.

So for the analysis, if only the magnitudes of FDs are used, then it becomes independent of
orientation (rotation) and starting point of the contour. This is because the phase change in the

coefficients does not affect the magnitude of FDs. Hence, the normalized FDs, (NFD), are obtained as

0, k=0
NFD(k)=4{B(k)/ BQ1), k=12,..,N/2
B(k+ N)/ BQ1), k=-1,-2,...~(N/2)+1

The second algorithm, which is based on Fourier Descriptors, uses FDM as a measure of the

feature information of the shape that is defined as

N2 N/2
FDM =| Y |NFDK)|/[K|| / Y |NFD(K)|
k=_%+1 k=—%+1

where ||| is the norm. In the measure above, the division by |k| reduces its sensitivity to high
frequency noise (which appears in the shapes with rough boundaries) and the denominator normalizes

the quantity and limits its range within O to 1.
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5.1.3 Compactness:

A dimensionless measure of shape compactness, C, is defined as [GW87],

where P is the length of the region perimeter and A is the area of the region. Compactness provides a
measure of contour complexity versus area enclosed. A shape with a rough contour including several
incursions will have a high value of C, indicating low compactness. It is clear that this quantity is

independent of rotation, scale and translation.

It should be noted that these shape factors measure the roughness of shapes with different
concepts. Therefore, by using these three measures, the robustness of the shape recognition

procedure will increase because the information content in each one supplements that of others.

5.2 Test Procedure

In the first stage, for the training purpose of the shape recognition system, several shapes are
extracted from the known weapon and non-weapon images. Each shape is run through the three
algorithms described above and three dimensionless numbers are obtained (one from each algorithm)
from which a three dimensional vector is formed. So, each shape, whether it belongs to a weapon or a

non-weapon object, is represented by a three dimensional vector.

The vectors that are obtained from the known weapon shapes are grouped in one reference
library (Library1). The vectors from the known non-weapon shapes are grouped in another reference
lib;ary (Library2). For the known weapon shapes, pictures of different kind of handguns are digitized
(see Figure 5.1) and the corresponding reference Libraryl data are obtained by running the shape
characterization algorithms on these images. For the known non-weapon shapes, basic synthesized

geometric shapes are considered. These are circles, squares and rectangles (with different side ratios)
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in several sizes and rotated positions. Reference Library2 data are obtained from these synthetic

shapes in the same way as described for Library1 data.

i
s
r

Figure 5.1. Typical shapes in the weapon library (Library1).

In the second stage, on a new extracted shape image with unknown origin (i.e., with no prior
information whether it is a weapon or non-weapon shape) the three algorithms are run and its shape
characterization values are obtained as a three dimensional vector. Note that since each shape was
characterized by a three-dimensional vector, it can be represented as a point in a three dimensional

space. Hence, the recognition of this new shape is achieved by applying the nearest-neighbor method
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in this three-dimensional space. The normalized Euclidean distances between the new sample and
each sample of the reference libraries are computed. The shortest distance determines the class of the
new image. That is the new image is assigned to the same class (library) as of the one which is the

closest to it among all reference library vector points.

The Normalized Euclidean distance (NED) between shape characterization vectors X 1 and

X, is defined as

3
NED = Z(xli - le.)z/ml?‘

i=1

where X j and m; are defined by

t
Xj=(xj1,%5,%3)

where [ is for transpose and

Ly,
m=—) (x;).

The parameter N is the total number of vectors in the reference libraries.

As a test of system performance, leave-one-out [DK82] method was used to estimate the
probability of error of the classifier. In the literature, it is recommended as the best method to evaluate
the efficiency of a classifier using a given set of samples with known classes [DK82, Fuk90]. In
leave-one-out algorithm one sample (vector point) at a time from the reference libraries is left out and
used as a new unknown sample while the rest is used as reference library samples to classify this
sample based on the nearest-neighbor method. This is repeated for all reference library samples and
the ratio of the number of wrong classifications to the number of all performed classifications (equals

the number of all samples in the reference libraries) gives the probability of error of the classifier.
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In the leave-one-out test, the recognition system based on the three algorithms achieved
100% correct decision (classification). This result is obtained for the available library samples.
Although it is a good result, testing the system with the sample images acquired from real sensor
outputs will help us confirm that the system will perform well with real life data, too. If it is needed

the procedure can be modified further by adding and/or removing algorithms.
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6. CWD EXAMPLE

The entire CWD process of Figure 1 is demonstrated here by an example. The original IR
and MMW images are shown in Figure 6.1. Figure 6.2 shows the images after registration, filtering
and fusion. The images were registered using the algorithm of Chapter 2. After registration, each
source image was morphologically filtered using a 5 X 5 structuring element to remove some of the
unwanted details. The filtered images required additional cropping to allow for wavelet
decomposition and reconstruction by powers of two. For fusion, two levels were used for the wavelet

decomposition and reconstruction with 0=0.5.

Figure 6.1. Original IR and MMW images.




REGISTRATION

FILTERING

FUSION

Figure 6.2. Registration, filtering and fusion of original image pair
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The result of thresholding the fused image is shown in Figure 6.3 with the gun shape clearly
visible. Also, the shape descriptors are calculated for the gun shape and compared to the other shapes
in the weapon and non-weapon libraries. A three-dimensional plot is also shown in Figure 6.3 where
the gun shape is denoted by an ‘x’, the non-weapon library points are represented by ‘o’, and the
weapon library points are represented by ‘+’. From this plot it is clear that the gun shape is closest to

the points in the weapon library and that it will be classified as a weapon.

\",L

Figure 6.3. Thresholding and shape recognition.
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7. IMAGE FUSION FOR WIRELESS IMAGE TRANSMISSION

Before an image is transmitted over a wireless channel, it is desirable to implement a method
for representing the image that is resilient to channel errors. In addition, wireless transmission must
also meet bandwidth constraints that require compressed image data for most practical situations.
Here we will consider both uncompressed and compressed image data for transmission over bursty
channels. For an error resilient representation, wavelet based decomposition will be implemented for
transmitting the image in its uncompressed state. The compressed image will be represented using
the SPIHT algorithm of Said and Pearlman [SP96] without arithmetic encoding. During transmission,
the image will be subject to bursty channel errors. Therefore, a technique is needed at the receiver to
correct or conceal any errors that may degrade the perceptual quality of an image beyond acceptable
limits. The goal of this research is to introduce a novel image transmission method based on diversity

combining that can produce an image of high perceptual quality at the receiver.

Several methods for image transmission over wireless channels have been proposed in the
literature recently. Most of these methods have been proposed for transmission of compressed
images based on the discrete cosine transform (DCT) or the wavelet transform. These image
transmission methods can be divided into four categories: error correction/detection methods, error
resilient image coding, error concealing techniques, and hybrid methods. The error
correction/detection methods [HL98, KY95, KCR98, FK97, VH96] utilize automatic repeat request
(ARQ) schemes or different types of error coding to combat the errors introduced during wireless

transmission. The error resilient image coding techniques [SLCP96, IN95, MGTH95, Hem96, BA98]
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make the transmitted data stream less sensitive to wireless channel errors. Therefore, when the data
arrives at the receiver it is easier to recover from errors in the bit stream. Therefore, errors in these
types of image data will not affect image quality as much as other image coding schemes such as
JPEG. Error concealment schemes [WPE96, LR95, Z1.95] attempt to hide errors that degrade the
perceptual quality of the image after the image has been received. The proposed hybrid methods

[CF98, KR97, CRSZ98, LLL97, WZ95, Iun98] use a combination of the three techniques described

previously.

Diversity is a communication method used to improve wireless transmission that utilizes
independent (or highly uncorrelated) communication signal paths to combat channel noise. The
independent signal paths provide the receiver with multiple signals for appropriate diversity
processing of the received signals. The types of diversity typically used for wireless communications
include spatial, frequency and time diversity methods. Space or antenna diversity works by having
spatially separated antennas at the receiver to obtain the independent or uncorrelated signals.
Frequency diversity involves transmission of data on multiple carrier frequencies to get uncorrelated
fading channels, but a disadvantage of this method is the need for extra bandwidth. Time diversity
retransmits information at time intervals that allow for independent fading conditions. In all of the
above diversity methods, multiple independent (or highly uncorrelated) signals are available at the
receiver that need to be combined to generate the received information. Selection diversity is one
simple example of diversity combining that takes the signal from the diversity branch with the highest
SNR. Other common methods for diversity combining are equal gain combining and maximal ratio
combining. All of these methods carry out diversity combining in the data domain in that they
attempt to obtain the best estimate of the received digital data. For image transmission, a diversity
technique has been employed in conjunction with ARQ [WZ95]. This approach involves switched

antenna diversity that operates in the data domain.

Unlike the data domain diversity combining methods mentioned above, the diversity
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combining imethod we propose here operates in the image domain by using the properties of the
original image or its wavelet transform. Our novel approach to wireless image transmission combats
the effects of fading and other channel impairments by employing a diversity combining method that
attempts to directly improve image quality. This diversity combining method was inspired by the
image fusion work of Burt [BL93] where he produced one composite image from multiple source
images with different information content. Burt implemented his fusion method by taking a
Laplacian pyramid transform of each source image, combining the transforms based on measures in
the transform coefficient neighborhoods, and performing the inverse transform to obtain the
composite image. Later, Li et al [LMM95] used this same image fusion methodology but with the
wavelet transform. For image transmission over wireless channels, two or more diversity channels
can be utilized to obtain multiple bit streams at the receiver, with each bit stream independently
representing the image data. Then these bit streams can be combined in the image domain to improve
the perceptual quality of the received image. Due to the random nature of radio propagation, we
expect the errors on the individual channels to be independent or at least highly uncorrelated. The
independent nature of the diversity channels allows for a combining method in the image domain that

yields excellent quality images in the presence of wireless channel errors.
7.1. Channel Model

It is well known that a wireless transmission channel is corrupted by errors that are bursty in
nature. Errors in a wireless channel occur because of physical phenomenon such as fading and
multipath. Modeling of the physical channel is a complex problem that also depends upon the
movement of the transmitter, receiver, and other objects in the signal path. While a number of models
that characterize the physical phenomena have been proposed in the literature, here we employ an
input-output channel model. This class of models attempts to represent the input-output relationships
of the wireless channel [KS78]. They treat the channel as a black box and model the discrete error

stochastic process. This class of models was used extensively for the evaluation of modems and
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coding schemes. Here, we use such a model to generate error sequences that are typical of the

wireless channels they represent.

One popular input-output error model is in terms of a finite state Markov chain. In this
model, each state represents a different channel condition and the associated error behavior. These
models are specified in terms of transition probabilities between the individual states and the
corresponding error probability for each state. Two error statistics that can further describe these
types of channels are average error rate and average burst error rate. The average error rate is the
proportion of errors to the total number of transmitted bits and the average burst error rate is the time

spent in the bad state. The model we use for our simulations is a two-state Gilbert-Elliott channel

[Gil60, Ell63].

The two-state Gilbert-Elliott channel has one good state and one bad state, represented by 0
and 1 respectively as shown in Figure 7.1. This channel can also be described by its burst error
length and error rate parameters, which are related to the transition probabilities between states and
the error probabilities of the individual states. While in the good state the bits are transmitted
incorrectly with probability P.(0), and while in the bad state the bits are transmitted incorrectly with

probability P,(1). For this model it is assumed that P,(0) << P,(1). The two-state channel model can

l-p

1-r
p

Figure 7.1. Two-state Gilbert-Elliott channel

be described by the binary Markov process ¥y, with the following transition matrix:
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P(7n=07n4=0) P(ynzlyn-lr‘o) p 1-p
P= = .1
P(yn=07n4=1) P(ynzlyn-l':l) rol-r

where v,=0 if the channel is in the good state at time n, and y,=1 if the channel is in the bad state at
time n. The average burst length L is a geometric random variable with mean 1/r, and the average

time the channel is in the good state is also a geometric random variable with mean 1/(1-p). The

steady state probability of the channel being in a bad state is 7z, = (1- p)/(r+1- p). Also, the
steady-state error rate is [YW95] given as € = (Pe O)y-r+P(1)-(1- p))/ (r +1- p). This model

will be used to generate errors to corrupt the images in our simulations to evaluate the performance of

our diversity combining method.
7.2. Diversity Combining Method for Uncompressed Images

Our diversity combining method for uncompressed images involves computing the two-
dimensional wavelet decomposition of the source image and quantizing the resulting wavelet
coefficients. The coefficients are then transmitted as a bit stream over a wireless communications
system employing diversity without any error control. Diversity is used to obtain multiple copies of
the decomposed image data at the receiver. At the receiver, the individual decomposed images are
combined to form a composite wavelet decomposition and then the final received image is

reconstructed. This diversity combining method is depicted in Figure 7.2.

The first step in wireless image transmission is to consider how the image will be represented
for transmission. The two-dimensional wavelet decomposition of an image is implemented with
traditional subband filtering [WO86] using one-dimensional low-pass (H) and high-pass (G)
quadrature mirror filters. First, the input image is convolved with H and G in the horizontal direction
and then the output rows are down-sampled by two. Then the two resulting sub-images are further

filtered along the vertical direction followed by down sampling of the columns. At the output, the

70



Wavelet -
Source ——— . izati
Decomposition #| Quantization

Tmage
Y
Wireless
Channel
Received Wavelet Diversity € .
Tmage Reconstruction B Combination &

Figure 7.2. Diversity combining for uncompressed images.

source image at resolution k is decomposed into four sub-images: an image at lower resolution level
k-1, a horizontally oriented detail image, a vertically oriented detail image, and a diagonally oriented
detail image. The filtering can be repeated by using the low-resolution image as the source image
until the desired decomposition level is reached. The image at resolution k is reconstructed from the
four sub-images at resolution k-1 using reconstruction filters H and G. The rows are up-sampled by
two (one row of zeros is inserted between each row) and filtered in the vertical direction. Then the
same procedure is followed in the horizontal direction. At the output, a reconstructed image at
resolution & is obtained. Repeating the same procedure, the original level at which the decomposition

was started can be reached.

In this section, we use images transformed in the wavelet domain with uniform scalar
quantization of the coefficients. The results obtained will help demonstrate the usefulness of image
domain diversity combining for image transmission over wireless channels. For images without
compression, the wavelet representations are obtained from the bit streams received on the individual
diversity channels. In general, the low-resolution subband is more important perceptually and a large
error in pixel intensity can seriously affect image quality. An error in the high frequency subband is
not as important to the overall image quality. Because the characteristics of the subbands are
different, the diversity-combining rule for the low-resolution subband differs from the combination
rule for the high frequency subbands. After obtaining the composite decomposed image from fusing
the individual transformed images, the inverse wavelet transform is performed to obtain the final

image.
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The idea behind diversity combination is to significantly reduce visible errors in the received
image without necessarily using techniques such as ARQ or error correction coding. The diversity
combining method is demonstrated here using two independent channels, channel one and channel
two, but the idea can easily be extended to more channels. When the bit streams containing the
decomposed images are received, a decision is made as to whether to take the data from channel one,
channel two, or from a combination of both. Depending upon the channel state the two received bit

streams will contain the same values for many of the coefficients.

The low frequency subband and high frequency subbands have different sensitivities to
bursty channel errors. Therefore, the rules for the two types of subbands are different. For both of
the different subband types there are two combination modes: selection and coefficient combining. In
the selection mode, one coefficient is selected from the two decomposed images and placed in the
composite. In the coefficient-combining mode, groups of coefficients from neighborhoods of both
decomposed images are examined and a value is placed in the composite decomposed image based on
measures from both coefficient neighborhoods. The combination method is similar to using both

image averaging and spatial filtering to remove channel noise.

Since the low-resolution subband is more perceptually important to the image, more care
must be taken when dealing with detected channel errors in the low-resolution subband. First, the
coefficients from the two diversity bit streams are compared as they arrive at the receiver. If the
received wavelet coefficient values are the same, we assume that the value is correct and select the
coefficient from either channel to place in the combined transform. If the coefficient values are
different, the receiver waits until an m by n neighborhood of coefficients surrounding the coefficient
of interest is available from both channels. Small neighborhoods (i.e. 3 by 3) of an image are
generally smooth. Therefore, the intensity values usually do not vary significantly within these
neighborhoods. When the two received coefficients at location (i, j) are different, the m by n

neighborhoods of coefficients around them are grouped into a set of 2mn values. Then the median
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value is chosen as the coefficient to place in the combined low-resolution sub-image at location (i, j).
In general, this median-based method tends to be more robust to large channel errors than averaging
the coefficients in order to obtain a combined coefficient value. Therefore, for each (i, j), the
coefficient placed in the combined low resolution subband image is defined as follows (assuming m
and n are odd):

c,, (i j) if ¢, (i, j)=c5(3, )
wlb D= med[{c, (k. D} fenle DY) if oy, )% cafi ) 72)

. om—1 . om=1]1f. n-1 -+""1
for (k,l)e l——2—,...,l+———2 ) J“—2 Treeer) 2 where ¢,  represents the wavelet

coefficients in the low-resolution subband of the combined transform, and ¢,, and c,, are the low-

resolution coefficients obtained from two diversity channels.

An error in the high frequency subbands does not affect the quality of the final reconstructed
image as much as in the low frequency subbands. Also, most of the coefficients have magnitudes
close to zero. Therefore, the errors in the detail subbands are processed differently when the received
wavelet coefficients are not the same. Again, if the received wavelet coefficient values are the same,
we assume that the value is correct and place this value in the combined transform. However, if the
received coefficients are different, the coefficient with the minimum absolute value is chosen and
placed in the final combined transform. The idea behind this selection method is that a coefficient
that implies a strong edge where one does not exist will visually degrade the image more than a
coefficient that implies no edge where one really exists. Since most of the coefficients in the high
frequency subbands are near zero, there is a better chance that the coefficient with the minimum
absolute value will be correct. Even if we set the coefficients to zero in the high frequency subbands,
the quality of the final image will still be acceptable. The combined coefficient values for each

location (iy) in the high frequency subbands are given as follows:




N (i, j)y if ey, (i, ) =cy,(i, J)
(s ) = C,,,(l:,j) iflcm(i»j),<,cﬁz(i,j), (7.3)
Cuz (i, ) if,(—'uz @, j),<,Cm(i,j),

where ¢, represents the wavelet coefficients in the detail subbands of the combined transform, and

Cyy and ¢y, are the detail subband coefficients obtained from two diversity channels.

In order to show the feasibility of using diversity combination for wireless image
transmission, simulations were performed using uncompressed images. The results are compared to a
system that uses error control coding for error protection. In our experiments, images were
transmitted using a BCH(255, 179) code with error correction capability of 10 bits. For each
simulation, two bit error patterns were generated using the two-state Markov model described in
Section II. Both error patterns were applied to the image data bit streams for the diversity
combination method and one of the error patterns was used for the error coding method. The
parameters used for generating the bit error patterns were an average burst error length of 500 bits and
various bit error rates (.0001, .0005, .001, .005, .01). The error probabilities within the individual
states were set to P,(0) = 0.0 and P,(1) = 0.5. Performance is measured using peak signal to noise

ratio (PSNR):

2
PSNR =10log,, - 255 , (1.4)

2 X (pli )=l )

N
where p(i, j) are the pixel values of the original image and f)(i, j) are the pixel values of the
received image.

For our simulations we tested our diversity combining method on the two images shown in
Figure 7.3. Both are 8-bit graylevel images with 256 by 256 pixels. First, the source images were
decomposed to two levels using the wavelet transform. Then the wavelet coefficients were uniformly

quantized to 8 bits per pixel in order to maintain the same number of bits as in the original image.
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But for the bit stream with BCH coding, the total number of transmitted bits is greater than 8 bits per
pixel. For uncompressed images we did not attempt to match bit rates for performance comparisons.

The given PSNR results were averaged over twenty runs.

(@ (d)

Figure 7.3: Original test images for wireless image transmission: (a) Peppers and (b) Lenna.

Table 7.1 gives the PSNR results for the Peppers image using our diversity combination
method versus BCH(255, 179). In this table, we see that the PSNR results for diversity combining
are about 11 to 13 dB higher than error coding. Table 7.2 gives the PSNR results for the Lenna image
using our diversity combination method versus BCH coding where the diversity method exceeds the
error coding by about 15 to 16 dB. Examples of the received images are shown in Figures 7.4 and 7.5
for bit error rates of 0.0005, 0.005 and 0.01. These examples demonstrate that the diversity
combination method provides images with significantly improved perceptual quality compared to

using BCH error correction coding.
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Table 7.1: PSNR (dB) for Peppers

BIT ERROR RATE DIVERSITY BCH(255, 179)
COMBINING
.0001 31.5507 20.2975
0005 31.8934 19.9742
001 32.2498 20.8729
005 32.8253 20.3403
01 30.2323 17.0615

Table 7.2: PSNR (dB) for Lenna

BIT ERROR RATE DIVERSITY BCH(255, 179)
COMBINING
0001 34.1783 20.7307
0005 35.5003 20.8015
001 35.5044 19.6481
005 35.0813 20.3599
.01 33.0693 17.5477
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Figure 7.4. Results for Peppers image with BER = 0.0005 (a) BCH, (b) diversity combining; BER = 0.005 (c)
BCH, (d) diversity combining; BER = 0.01 (e) BCH, (f) diversity combining.




© C)

Figure 7.5. Results for Lenna image with BER = 0.0005 (a) BCH, (b) diversity combining; BER = 0.005 (c)
BCH, (d) diversity combining; BER = 0.01 (e) BCH, (f) diversity combining.
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7.3 Diversity Combining Method for Compressed Images

Our diversity combining method for compressed images is implemented using the SPIHT
image compression algorithm without arithmetic coding. The compressed image data is first
protected with interleaving and error control coding and then transmitted over a wireless
communications system using diversity. Multiple bit streams representing the image data are
obtained at the receiver. Then these multiple bit streams are decoded using appropriate channel
decoding algorithms followed by image decompression based on the SPIHT method up to the point
where the wavelet representations of the multiple images are obtained. Before computing the inverse
wavelet transform, the individual wavelet representations are combined using rules based on wavelet
transform characteristics. After diversity combining, a composite wavelet representation is obtained
and the received image is reconstructed by performing the inverse wavelet transform on this
composite representation. A block diagram of this diversity combining process is shown in Figure

7.6.

The output bit stream of the SPIHT image compression algorithm consists of three types of

data: 1) the header information, 2) the sorting information, and 3) the refinement information.

A

Source SPIHT Channel «| Wireless 1 Channetl

Image Compression d Coding 1  Channel «| Decoding
Y \ 4
) Inverse Decompress

Received W rl P Diversity up to
Image avelet Combining Wavelet
Transform
Transform

Figure 7.6. Diversity combining for compressed images.
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Because the SPIHT algorithm uses variable length coding, one error can result in loss of
synchronization and an unrecoverable image. The header information is a small portion of the data
but most of the bits need to be received correctly so that the image can be recovered. Also, the
sorting information bits must be received correctly (with the exception of the sign bits) in order to
avoid a loss of synchronization and the resulting inability to reconstruct the image. The refinement
bits do not contribute to any coefficient location information, so an error in these bits will not affect
the ability to reconstruct the image. If a refinement bit is in error it may cause a perceptual error in

the received image. However, these errors can be corrected or concealed in the final received image.

Another characteristic of the SPIHT bit stream is that the bits at the beginning are more
important than the bits at the end. The majority of the bits at the beginning of the SPIHT bit stream
tend to determine the coefficient placement and value of the most significant bit. These bits should
be highly protected in order to insure that the received image can begin to be reconstructed. Toward
the end of the SPIHT stream, there are still some bits that determine coefficient placement, but these
bits contribute less to the perceptual quality of the image. Therefore, the bits at the beginning will be
protected with a more powerful error correction code than the bits at the end of the bit stream. We
employ interleaving and multiple channel codes for error protection of different portions of the

SPIHT stream. Similar ideas for error protection have been used in [LR95, KR97, SZ98).

We will describe the diversity combination process assuming two diversity channels but these
rules can be extended to more than two channels. In our simulation examples, the error correction
scheme first interleaves the binary data stream by rows at a depth of 50 bits and groups them into
blocks, then three different Reed-Solomon (RS) codes with different error correction capabilities are
used to protect the data. The beginning of the image bit stream is protected with a more powerful
code than the bits at the end. The first 7500 bits are grouped into two blocks of data and each block is
protected with a RS(31, 15, 8) code down the columns. The next 11500 bits are also grouped into

two blocks of data and each block is protected with a RS(31, 23, 4) code down the columns. The
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final two blocks of data includes 35400 bits that are protected with a RS(63, 59, 2) code. This error
protection scheme results in the transmission of 0.2075 source bits per pixel and 0.2625 bits per pixel
overall (source plus channel coding), and therefore, the efficiency is about 80 percent. Figure 7.7
shows our coding method with interleaving and RS channel coding for a given data block. The
blocks are transmitted by rows, with all of the data bits in the block sent before the error control bits.
Therefore, if the two blocks received from the individual diversity channels have the same bits we can
assume no errors occurred on either channel. In this case, no channel decoding is necessary and the
error control bits can be discarded. This is similar to the diversity combining rule employed in the

image domain and here we use it in the data domain also.

After the data streams are decoded and the associated individual wavelet transforms are
obtained, the transforms are combined. Like the rules for the uncompressed images, the combination
rules are dependent on which subband is being processed. The actual combination rules for the
SPIHT bit streams are slightly different from those rules in equations (7.2) and (7.3). An error in one

of the sorting bits will contribute to random errors in the image, unlike the uncompressed images
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Figure 7.7. Interleaving and encoding scheme for a given data block.
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where the errors were generally isolated to certain areas in the images. The diversity combination
rule for the low-resolution subband keeps the coefficient value at position (i, j) if the values are the
same in both transforms. If the coefficient values are not equal, one of two types of error occurred at
that location. Either 1) there was an error in the sorting pass of the SPIHT algorithm where one
coefficient was assigned the wrong number of bits, or 2) there was an error in the refinement pass
where bits other than the most significant bit were in error. A threshold value, o, is set to determine
which type of error occurred. If the coefficient values are not the same and the difference is greater
than the threshold, it is assumed the first type of error occurred, so one of the values is chosen based
on the values of neighboring coefficients. But if the difference is less than o, it is assumed the
second type of error occurred and the average of both coefficients at the same location is placed in the

composite transform. The diversity combination rule for the low-resolution subband is as follows:

(CLI(i’j) if ¢, (i, j)—CLZ(l’])

ol j)=J (c,_,(i,j)+c,_2(z‘,j))/2 1f,c,_, (i, 2(z,_]),<af,

e ()] if |, (i j)—c,_z(l, J)z e, and d,(i, J)<d,(i,j) )
\cm(i,j) 1f,c“(z J)=culiJ) ,>a and 4, (i, J)<d,(i,))

where dk(i’j)=,cu(i’j)_cu(i,j+1), for k=1, 2 and ¢, , ¢, c,, represent the wavelet

coefficients in the low resolution subband for the combined and the individual transforms.

The combination rule for the high frequency subbands also keeps the coefficient value at

less than a threshold o, then the average of the received coefficients is placed in the composite
transform. If the difference is greater than o, then one of the coefficient values is chosen based on
the descendant coefficient values (instead of the neighboring coefficient values as used for the low-

resolution subband). This combination rule takes into account the relationships among the
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coefficients in the same hierarchical trees. The diversity combination rule for the high frequency

subbands is as follows:

(Cﬂl(i»j) ifc”,(i,j)=c,,2(i,j)

i) (em(is i) +enali )2 if feyi (i, 1) - e (i) < @,

e PN i€ e (/) = cun(in ) 2 @, and 1,6, j) <1y, ) O
kcHz(i,j) iflc,”(i,j)—c,,z(t l a, ndtzzj)<tl( j)

where ¢, (i, j) =

Cﬂk(i,j)—(iic,,k(zmm,zjm)/z;)

4 o fork=1,2and ¢y, ¢y, cy, represent
m=0 n=

the wavelet coefficients in the high frequency subbands for the combined and the individual

transforms.

For our simulations we assumed the channel model had an average bit error rate of 0.01 and
an average burst error length of 500 bits, with the error probabilities of each state being P.(0) = 0 and
P,(1) = 0.5. The results presented here are PSNR distributions (a performance measure proposed in
[SZ98]) plotted for 1000 runs. In these plots, smaller probability means better performance. We
tested our diversity method on the Peppers and Lenna images, both 512 by 512 pixels and coded to

0.25 bits per pixel.

Figure 7.8 shows the results for the Lenna image for no error control, unequal error
protection RS coding only, and our image domain diversity combining method including unequal
error protection. The plot shows that the performance for our diversity combining method
significantly improves Prob(PSNR < x) for noisy channel conditions. For example, the probability
that the UEP decoded image will have a PSNR less than 26 dB is 0.55 while for the diversity
combining image the probability that the PSNR will be less than 26 dB is 0.15. The mean PSNRs for
no error control, UEP and diversity combining are 23.49 dB, 27.21 dB and 29.04 dB, respectively.
Thus, image domain diversity combining provides an improvement over the UEP method of about 1.8

dB in mean PSNR. Also, the PSNR variance for the UEP method is 18.72 while the variance for the




diversity combining method is 6.47. The smaller variance implies that the quality of the received

image will be more uniform.

Figure 7.9 shows a similar plot for the Peppers image results. The plot also shows that the
performance for our diversity combining method improves Prob(PSNR < x) for noisy channel
conditions. For example, the probability that the UEP decoded image will have a PSNR less than 26
dB is 0.54 while for the diversity combining image the probability is only 0.22. The mean PSNRs for
no error control, UEP and diversity combining are 22.27 dB, 27.01 dB and 28.02 dB, respectively.
So our image domain diversity combining provides an improvement over the UEP method of about
1.0 dB in mean PSNR. Also, the PSNR variance for the UEP method is 18.85 while the variance for
the diversity combining method is 5.75. The results again show that the quality of the received image

for our diversity combining method will be more uniform.
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Figure 7.8: PSNR distribution for Lenna image source coded to 0.25 bpp.
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Figure 7.9: PSNR distribution for Peppers image source coded to 0.25 bpp.

For PSNR greater than 30 dB, both Figures 7.8 and 7.9 show that no error control and UEP
perform better than diversity combining. But for PSNR values above 30 dB, the difference in the

perceptual quality of the received image is negligible.

An image domain diversity method has been presented for the transmission of images over
wireless channels. For images represented in the wavelet domain, diversity is used to obtain multiple
data streams of the image at the receiver where these data streams are combined to obtain a composite
image. The methods proposed here use some of the properties of the wavelet transform to
significantly improve the perceptual quality of the received image. We first implemented diversity
combining for uncompressed images to demonstrate the usefulness of this method. The diversity
combining rules for compressed images were implemented with unequal error protection utilizing
three different Reed Solomon error correction codes. However, image domain diversity combining
can be used with any other channel coding scheme or wavelet based compression method to improve

performance. Our results showed that image domain diversity could be used to improve performance




for images transmitted over wireless channels, possibly in conjunction with other error protection

schemes.
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8. CONCLUSIONS

Concealed weapons detection, an important problem for law enforcement, requires several
processing stages tha't were covered in this report. The image registration algorithm described in this
report specifically dealt with methods that perform well for IR and MMW images. When multiple
images with different information were combined, wavelet based image fusion improved the ability to
recognize weapons in the composite image. Preliminary results for the shape recognition algorithms
show that this method is capable of recognizing weapon vs. non-weapon shapes. In addition, a
fusion-based image transmission method was presented for sending images over wireless

communication channels.

As indicated in Chapter of this report, there are certain conditions where our registration
algorithm does not provide accurate results. Other registration methods and rules can be added to the
current algorithm to deal with different imaging conditions. For the shape recognition stage, the
libraries require additional data in order to build the libraries with more typical weapon and non-
weapon shapes. When more data is available, further testing of the shape recognition stage will be
performed. We may also add more shape descriptors to the three descriptors that are currently being
utilized in our recognition algorithm. For this report, we only used data from imaging sensors for the
CWD problem. In future work, we may investigate multisensor fusion of data from both imaging and

non-imaging sensors.
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